

Course ID: BCH 297 Course Name: Introduction to Biochemistry

Semester: Winter 2016

Credits: 3

Prerequisites: BIO 131, BIO 133, CHE 251

Class Information		Instructor Information			First day of classes:	Wed., Jan. 06, 2016
Days:	WED / FRI	Instructors:	Team Taught: Graeme Gissing Liza Abraham Enitan Ibisanmi		Last day to add/drop, or change to audit:	Sun., Jan. 17, 2016
Time:	9:45-11:00	Email:	ggissing@ambrose.edu		Last day to request revised exam:	Mon., Feb. 29, 2016
Room:	A1085-1	Phone:	403-410-2000 x 5940		Last day to withdraw from course:	Fri., Mar. 18, 2016
Lab: Room:	WED: 11:15-2:15 A2151	Office:	G2204	-	Last day to apply for time extension for coursework:	Tue., Mar. 29, 2016
FINAL EXAM: Date: Monday, April 18, 2016 Time: 1:00 PM Room: A2141		Office Hours:	Office hours for each of the three instructors will be provided in class		Last day of classes:	Wed., Apr. 13, 2016

Textbook:

McKee, T. and McKee, J.R. *Biochemistry: the molecular basis of life.* 5th Edition. 2013. Oxford University Press. New York.

Note: Students may use an alternate undergraduate biochemistry text if <u>approved</u> by an instructor.

Note: A link to a free basic undergraduate biochemistry text will be provided in class.

Course Description:

Biochemistry explores the chemical makeup and reactions that are essential for life processes. This course will introduce students the structure and function of carbohydrates, amino acids, proteins, lipids, and enzymes, along with an introduction to metabolism and metabolic diseases. The course tutorial and laboratory components will introduce students to some fundamental biochemistry experiments and aid in the comprehension of the concepts covered during lectures.

Expected Learning Outcomes:

It is the aim of the course that students acquire the following skills:

- 1. Understand the structure, function, and biochemistry of important biological macromolecules.
- 2. Understand the principles of enzymatic activities and analysis.
- 3. Comprehend various metabolic pathways and appreciate their complexity, network, and regulation.
- 4. Connect metabolic pathways and biomolecules to common metabolic diseases.

Course Schedule:

The following schedule provides a general guideline and timetable for topics and tests. It may change depending on progress through the semester.

Note: The Lab and Tutorial schedule may change.

Day	Week	Date	Learning Outcomes	Instructor
				(may change)
W	01	January 6, 2016	INTRODUCTION:	Graeme
			Course outline and course evaluation	
F	01	January 8, 2016	FOUNDATIONS:	Graeme
			Introduction to biochemistry	
W	02	January 13, 2016	AQUEOUS CHEMISTRY:	Liza
			Buffers and pH	
			Buffers and pH in biological systems	
			Tutorial 01: Duffere and all calculations	
			Tutorial 01: Buffers and pH calculations	
F	02	January 15, 2016	ENERGETICS:	Liza
	-		Laws of thermodynamics	
			Energy in biological systems	
W	03	January 20, 2016	CARBOHYDRATES:	Graeme
		, .	Carbohydrates classes and structures	
			Tutorial 02: Dilutions and serial dilution calculations,	
			micropipetting	
F	03	January 22, 2016	CARBOHYDRATES:	Graeme
	05	Junuary 22, 2010	Oligosaccharides and polysaccharides	Graeme
			Glycosidic linkages	
W	04	January 27, 2016	AMINO ACIDS AND PEPTIDES:	Graeme
			Amino acids	
			Titration curves for diprotic and triprotic amino acids	
			Isoelectronic point of amino acids and peptides	
			Tutorial 03: Data analysis and standard curves	

F	04	January 29, 2016	PEPTIDES AND PROTEINS:	Graeme
	04	January 23, 2010	Protein structure (1°, 2°, 3° and 4°)	Graeme
			Peptide bonds	
			Rotation angles phi and psi	
			Interactions important for the stability of protein structure	
			Quaternary structure	
W	05	February 3, 2016	PROTEINS:	Liza
			Myoglobin and hemoglobin	
			Protein denaturation	
			Lab 01: Protein concentration assays	
F	05	February 5, 2016	LIPIDS:	Eni
			Introduction to lipids	
W	06	February 10, 2016	LIPIDS AND MEMBRANES:	Eni
			Important types of lipids in biological systems	
			Membrane lipids (structure and function)	
			Membrane proteins (structure and function)	
			Lab 02: Structure and function of lipids (wet lab or case	
			study). Half of lab period. Second half open for assistance	
			with questions for Test 01.	
F	06	February 12, 2016	Test 01: Material from Week 01 to Week 05 (inclusive)	Graeme
W	07	February 17, 2016	No class	
F	07	February 19, 2016	No class	
W	08	February 24, 2016	ENZYMES:	Liza
			Transition state and activation energy barrier	
			Enzymes and substrate binding	
			Cofactors	
			Enzyme classes (oxidoreductases, transferases, hydrolases,	
			lyases, isomerases, and ligases) and functions	
			Lab 03: Bioinformatics	
F	08	February 26, 2016	ENZYMES:	Graeme
•			Michaelis-Menten plots	2.00.10
			Vmax and Km	
			Eadie-Hofstee plots	
			Lineweaver-Burk plots	
			Turnover number (kcat)	
			Competitors	
W	09	March 2, 2016	PHOTOSYNTHESIS:	Graeme
			Photosynthesis overview	
			Light and Dark Reactions	
			Lab 04: Enzyme Kinetics	
			-	

	F	09	March 4, 2016	PHOTOSYNTHESIS:	Graeme
		Light and Dark Reactions (continued)			
				Photorespiration	
-				Comparison and biological significance of C3, C4, and CAM	
	W	10	March 9, 2016	GLYCOLYSIS AND THE FATES OF PYRUVATE:	Liza
				Conversion of glucose into pyruvate through glycolysis (must be able to draw all intermediates, list any required	
				cofactors, and name/classify the enzyme for each step)	
				Entry of glycerol and fructose into glycolysis	
				Glycolysis regulation	
				Pyruvate conversion to ethanol or lactate under anaerobic	
				conditions	
				Lab 05: Chromatography of photosynthetic pigments and	
				determining absorbance	
	F	10	March 11, 2016	METABOLISM: CARBOHYDRATES AND DISEASE	Eni
				Gluconeogenesis	
				Glycogenesis and glycogenolysis	
	W	11	March 16, 2016	Diseases associated with carbohydrate metabolism AEROBIC RESPIRATION:	Liza
	vv	11	Warch 10, 2010	Pyruvate conversion to acetyl-CoA	LIZd
				Pyruvate dehydrogenase complex	
				Form, creation, and function of NAD and FAD	
				Tutorial 04: Glycolysis case studies. Half of lab period.	
				Second half open for assistance with questions for Test 02.	
	F	11	March 18, 2016	Test 02: Material from Week 06 to Week 10 (inclusive)	Graeme
	W	12	March 23, 2016	AEROBIC RESPIRATION: TCA	Graeme
				TCA cycle (must be able to draw all intermediates, list any	
				required cofactors, and name/classify the enzyme for each	
				step)	
				Alpha-ketoglutarate dehydrogenase complex and succinyl- CoA synthetase	
				TCA cycle regulation	
				Tutorial 05: TBD - Possibly aerobic respiration dry lab or	
				case study	
-	F	12	March 25, 2016	Good Friday - No class	
	W	13	March 30, 2016	AEROBIC METABOLISM: ETC	Graeme
				How reducing power is converted to ATP in oxidative	
				phosphorylation	
				How NADH and FADH ₂ are oxidized in the electron	
				transport chain and how electrons travel through each	
				complex of the electron transport chain	
				How the passage of electrons through the electron transport chain creates an electrochemical gradient that	
				Transport chain creates an electrochemical gradient that	

			can be used by ATP synthase to synthesize ATP Describe how ATP synthase uses the electrochemical gradient to synthesize ATP (binding-change mechanism) Tutorial 05: Open - Term project assistance	
F	13	April 1, 2016	METABOLISM AND DISEASE: LIPIDS Lipid metabolism and Beta-oxidation Key examples of lipids and disease	Eni
W	14	April 6, 2016	METABOLISM AND DISEASE: VITAMINS The role of vitamins in metabolic pathways Consequences of vitamin deficiency Key examples of vitamins and disease Tutorial 06: Biochemistry Symposium	Eni
F	14	April 8, 2016	METABOLISM: OVERVIEW Review of metabolism (big picture to connect the previously covered topics) Integration of metabolism	TBD
W	15	April 13, 2016	LAST CLASS - WILL REMAIN OPEN No Lab or Tutorial	OPEN

Requirements:

All exams and assignments are announced and/or scheduled in advance. Assignments are due at the designated time; please see the late policy below for additional information about late submissions.

Theory (Lecture) Exams:

1. Term tests are objective, utilizing a variety of formats including multiple-choice, matching, true/false, short answer, calculations, drawing of diagrams and metabolic pathways. Tests may also contain a set of selected short essay questions.

2. The final exam will have a structure similar to the term tests, with a combination of question formats. Approximately 50% of the final exam will cover new material (since term test 2 of 2). Approximately 50% of the exam will consist of comprehensive material. This ratio may change based on class progress but will be made clear prior to the final exam. Further details regarding this comprehensive material will be forthcoming.

Labs:

1. Lab Reports and/or Assignments (where applicable) are exercises designed to review major concepts, summarize pertinent results, and demonstrate comprehension of material covered in both lab and lecture. Lab reports and/or Assignments will always be collected at the **BEGINNING** of the class in which they are due, unless otherwise noted by the instructor. **Please note:** Attendance at the laboratory and tutorial sessions is compulsory. Any lab missed without a valid excuse cannot be made up.

Submission of Assignments:

Over the course of term, we may be engaged in a number of projects, assignments, experiments that require both faculty-student and student-student collaboration that will be turned in for a grading. Thus, it will be vital that all parties take responsibility for their part in these activities. We will provide clear objectives, adequate time, and necessary assistance for completing any projects, assignments, experiments. As students, you will be responsible for working together and managing your time such that you are prepared for due dates.

Method of Submission: All written assignments and lab reports are to be **printed and handed in as a hard copy** unless otherwise instructed. **Note:** Emailed assignments will <u>not</u> be accepted unless specifically asked for as a submission method.

Late Submission of Assignments:

We realize that certain circumstances prevent students from turning in individual assignments on time and have developed the following late policy to address these rare situations. This policy will apply to all lecture and laboratory assignments. The late policy will **NOT cover term tests, quizzes, or the final exam**, all of which **MUST** be completed on time or a grade of zero will be assigned.

The following will only apply if the instructor is contacted **<u>IN WRITING</u>** prior to the deadline. Late submissions without contact prior to the deadline will not be accepted.

Condition (calendar days include both weekdays and weekends)		
Assignment is turned in 1 calendar day after it is due (e.g. Due: Monday, handed in on Tuesday)	20%	
Assignment is turned in 2 calendar days after it is due (e.g. Due: Monday, handed in Wednesday)	30%	
Assignment is turned in 3 calendar days after it is due (e.g. Due: Friday, handed in on Monday)	40%	
Assignment is turned in 4 calendar days after it is due (e.g. Due: Monday, handed in on Friday)	50%	
Assignment is turned in 5 or more calendar days after it is due	100%	

Attendance:

Regular attendance will be essential for success on all exams and assignments. No points will be subtracted from your grade for non-attendance. However, in-class assignments and any in-class graded activities cannot be made up and, **if missed**, **will receive a grade of zero**.

Grade Summary:				
Activity	Percent of Grade	Notes		
Term Test 01 Term Test 02 Lab Reports / Activities / Assignments (4 or 5) Lecture / Activities / Assignments / Quizzes (4) Term Paper / Term Project* Final Exam	15% 15% 20% 10% 10% 30%	 *Term project can be: 1) Individual Term Paper (10 pages text) 2) Presentation at the Biochemistry Symposium (conference presentation style) 3) Formal Scientific Poster for the Biochemistry Symposium 		

Grade Summary:		
A+	97-100%	
А	93-96%	
A-	89-93%	
B+	83-89%	
В	77-82%	
В-	70-76%	
C+	67-69%	
с	63-66%	
C-	60-62%	
D+	54-59%	
D	50-53%	
F (Fail)	Below 50%	

Policies:

Communication

All students have received an Ambrose e-mail account upon registration. It is the student's responsibility to check this account regularly as the Ambrose email system will be the professor's instrument for notifying students of important matters (cancelled class sessions, extensions, requested appointments, etc.) between class sessions. If students do not wish to use their Ambrose accounts, they will need to forward all messages from the Ambrose account to another personal account.

Registration

During the **Registration Revision Period** students may enter a course without permission, change the designation of any class from credit to audit and /or voluntary withdraw from a course without financial or academic penalty or record. Courses should be added or dropped on the student portal by the deadline date; please consult the List of Important Dates. After that date, the original status remains and the student is responsible for related fees.

Students intending to withdraw from a course after the Registration Revision Period must apply to the Office of the Registrar by submitting a "Request to Withdraw from a Course" form or by sending an email to the Registrar's Office by the **Withdrawal Deadline;** please consult the List of Important Dates on the my.ambrose.edu website. Students will not receive a tuition refund for courses from which they withdraw after the Registration Revision period. A grade of "W" will appear on their transcript.

Exam Scheduling

Students wishing to withdraw from a course, but who fail to do so by the applicable date, will receive the grade earned in accordance with the course syllabus. A student obliged to withdraw from a course after the Withdrawal Deadline because of health or other reasons may apply to the Registrar for special consideration.

Students, who find a conflict in their exam schedule must submit a Revised Examination Request form to the Registrar's Office by the deadline date; please consult the List of Important Dates. Requests will be considered for the following reasons only: 1) the scheduled final examination slot conflicts with another exam; 2) the student has three final exams within three consecutive exam time blocks; 3) the scheduled final exam slot conflicts with an exam at another institution; 4) extenuating circumstances. Travel is not considered a valid excuse for re-scheduling or missing a final exam.

Electronic Etiquette

Students are expected to treat their instructor, guest speakers, and fellow students with respect. It is disruptive to the learning goals of a course or seminar and disrespectful to fellow students and the instructor to use electronics for purposes unrelated to the course during a class session. Turn off all cell phones and other electronic devices during class. Laptops should be used for class-related purposes only. Do not use iPods, MP3 players, or headphones. Do not text, read, or send personal emails, go on Facebook or other social networks, search the internet, or play computer games during class. Some professors will not allow the use of any electronic devises in class. The professor has the right to disallow the student to use a laptop in future lectures and/or to ask a student to withdraw from the session if s/he does not comply with this policy. Repeat offenders will be directed to the Dean. If you are expecting communication due to an emergency, please speak with the professor before the class begins.

Academic Policies

It is the responsibility of all students to become familiar with and adhere to academic policies as stated in the Academic Calendar. Personal information (information about an individual that may be used to identify that individual) may be required as part of taking this class. Any information collected will only be used and disclosed for the purpose for which the collection was intended. For further information contact the Privacy Compliance Officer at privacy@ambrose.edu.

Extensions

Although extensions to coursework in the semester are at the discretion of the instructor, students may not turn in coursework for evaluation after the last day of the scheduled final examination period unless they have received permission for a course Extension from the Registrar's Office. Requests for course extensions or alternative examination time must be submitted to the Registrar's Office by the deadline date; please consult the List of Important Dates. Course extensions are only granted for serious issues that arise "due to circumstances beyond the student's control."

Appeal of Grade

An appeal for change of grade on any course work must be made to the course instructor within one week of receiving notification of the grade. An appeal for change of final grade must be submitted to the Registrar's Office in writing and providing the basis for appeal within 30 days of receiving notification of the final grade, providing the basis for appeal. A review fee of \$50.00 must accompany the appeal. If the appeal is sustained, the fee will be refunded.

Academic Integrity

We are committed to fostering personal integrity and will not overlook breaches of integrity such as plagiarism and cheating. Academic dishonesty is taken seriously at Ambrose University as it undermines our academic standards and affects the integrity of each member of our learning community. Any attempt to obtain credit for academic work through fraudulent, deceptive, or dishonest means is academic dishonesty. Plagiarism involves presenting someone else's ideas, words, or work as one's own. Plagiarism is fraud and theft, but plagiarism can also occur by accident when a student fails or forgets to acknowledge to another person's ideas or words. Plagiarism and cheating can result in a failing grade for an assignment, for the course, or immediate dismissal from the university college. Students are expected to be familiar with the policies in the current Academic Calendar that deal with plagiarism, cheating, and the penalties and procedures for dealing with these matters. All cases of academic dishonesty are reported to the Academic Dean and become part of the student's permanent record.

Note: Students are strongly advised to retain this syllabus for their records.