Ambrose University College

Winter 2011

PHY 123 – Introductory electromagnetism, Fluids and Thermal Physics

Instructor:Dr. L. BravermanE-mail:lbraverman@ambrose.edu

Course Description: Topics include: Hydrostatics, Pressure and density, Archimedes' principle, apparent weight, floating; Thermal Physics: Temperature, heat and the First Law of Thermodynamics, Thermal expansion, The Kinetic Theory of Gases, Ideal and real gases, PVT diagrams; Electric charge and Electric field, Coulomb's Law, Electric potential, potential energy; capacitance. Electric current, resistance, Ohm's Law, Circuits, work, energy and Emf; Magnetic fields, Hall Effect, magnetic force on a current, Magnetic field due to a current, Ampere's Law, Induction and Inductance, Lentz's Law.

Physics Laboratory I: Experimental techniques, data collection, graphical analysis and report writing; Application to experiments in mechanics, thermodynamics and electromagnetism.

Prerequisite: Physics 211 (or equivalent with consent of the department).

Textbook:

Walker, J: Fundamentals of Physics, 8th or 9th ed. John Wiley and Sons, Inc. Part 2 and 3 Textbook website: <u>http://www.wiley.com/college/hrw</u>

Grading:

There will be a short quiz every other week, one midterm and one final examination.

Quizzes	20%
Labs	15%
Midterm:	25%
Final:	40%

Student grades are earned according to the policy of the college.

Tentative Lecture Plan:		
Week	Topics	Reading
1	Hydrostatics. Pressure, Archimedes' principle, apparent weight, floating.	14.1 – 14.7
2	Temperature, Heat, Internal energy and the first law of thermodynamics.	18.1 – 18.12, lecture notes
3	The kinetic model of gases	19.1 – 19.11, lecture notes
4	Electric charge; Coulomb's Law; Charge Conservation Law.	21.1 - 21.6
5 –6	Uniform electric field: Parallel-plate capacitor. Work, electric potential energy. Electric potential. Calculating the potential from the field. Midterm Test	22.1 – 22.9, lecture notes 24.1 – 24.12
7	Gauss' Law (optional). Capacitance and Capacitors, series and parallel connection of capacitors. Energy stored in the electric field.	23, 25.1 – 25.5, lecture notes
8 – 9	Current and resistance; Circuits, Emf.	Lecture notes, 26.1 – 26.9, 27.1 – 27.8, lecture notes
10	Magnetic fields. Field lines. The Lorenz force. Applications, e.g. mass spectrometer, velocity selector, cyclotron.	28.1 – 28.8, lecture notes
11	Magnetic fields produced by currents: straight-line current, circular loop, solenoid. Forces between parallel currents, Ampere's Law.	29.1 – 29.5, lecture notes
12 - 13	Induction and Inductance. Faraday's Law of induction, Lenz's Law. Review.	30.1 – 30.8, lecture notes